On Primitive Ideals in Polynomial Rings over Nil Rings
نویسندگان
چکیده
منابع مشابه
On primitive ideals in polynomial rings over nil rings
Let R be a nil ring. We prove that primitive ideals in the polynomial ring R[x] in one indeterminate over R are of the form I [x] for some ideals I of R. All considered rings are associative but not necessarily have identities. Köthe’s conjecture states that a ring without nil ideals has no one-sided nil ideals. It is equivalent [4] to the assertion that polynomial rings over nil rings are Jaco...
متن کاملOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملPolynomial Rings over Pseudovaluation Rings
Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...
متن کاملOn Structure of Ideals in Skew Polynomial Rings over HNP Rings
An elegant and strong theory on noncommutative Noetherian rings has been developed in several groundbreaking works over the second half of the 20th century following the pioneering research of Alfred Goldie in the 1960s. The theory is still an active research area in Algebra and features many important classes of rings such as matrix rings, polynomial rings, differential operator rings, group r...
متن کامل0-primitive Near-rings, Minimal Ideals and Simple Near-rings
We study the structure of 0-primitive near-rings and are able to answer an open question in the theory of minimal ideals in near-rings to the negative, namely if the heart of a zero symmetric subdirectly irreducible near-ring is subdirectly irreducible again. Also, we will be able to classify when a simple near-ring with an identity and containing a minimal left ideal is a Jacobson radical near...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebras and Representation Theory
سال: 2005
ISSN: 1386-923X,1572-9079
DOI: 10.1007/s10468-004-6118-7